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Motivation

Capture a detailed description of a pandemic spread
using real spatiotemporal data for evaluating and

testing different policy scenarios.

Prior work
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Spatial learning in GNNs:
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Hand-crafted parameters
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Powerful representation learning
of complex structured data

Hierarchical Directional Message Passing Consistent Port Numbering
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Multi-region Recurrent Neural Networks (nRNNs)
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Capabilities:
High fidelity learning of
chaotic dynamics in
continuous time
Data-driven RNN model

based on experimentally-
recorded data
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Our main contributions

v Abipartite based GNN model (H-DCPNDb) that captures the
transmission spread dynamics across (i) individuals and (ji) facilities
with granularity descriptors (e.g. health condition, age, mobility).

A sequence modelling that temporally integrates the GNN learnt
representations using multi-region recurrent neural network (mMRNN).

A metamodel equation of the proposed GNN+mRNN model that
integrates multiple, time-series spreading rate results (e.g. per age,
health condition, mobility) which is capable of explaining the
transmission dependency between descriptors.
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Symbolic Metamodelling
8(x) = G(x,0%)

0% = argmingeg ¢(f(x), g(x))
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